Learning discrete decomposable graphical models via constraint optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning discrete decomposable graphical models via constraint optimization

Statistical model learning problems are traditionally solved using either heuristic greedy optimization or stochastic simulation, such as Markov chain Monte Carlo or simulated annealing. Recently, there has been an increasing interest in the use of combinatorial search methods, including those based on computational logic. Some of these methods are particularly attractive since they can also be...

متن کامل

Alternative parametrizations and reference priors for decomposable discrete graphical models

For a given discrete decomposable graphical model, we identify several alternative parametrizations, and construct the corresponding reference priors for suitable groupings of the parameters. Specifically, assuming that the cliques of the graph are arranged in a perfect order, the parameters we consider are conditional probabilities of clique-residuals given separators, as well as generalized l...

متن کامل

Markov Bases for Decomposable Graphical Models

In this paper we show that primitive data swaps or moves are the only moves that have to be included in a Markov basis that links all the contingency tables having a set of fixed marginals when this set of marginals induce a decomposable independence graph. We give formulas that fully identify such Markov bases and show how to use these formulas to dynamically generate random moves.

متن کامل

An Algorithm for Combining Decomposable Graphical Models

We propose an algorithm for combining decomposable graphical models and apply it for building decomposable graphical log-linear models which involve a large number of variables. A main idea in this algorithm is that we group the random variables that are involved in the data into several subsets of variables, build graphical log-linear models for the marginal data, and then combine the marginal...

متن کامل

Bayesian model comparison based on expected posterior priors for discrete decomposable graphical models

The implementation of the Bayesian paradigm to model comparison can be problematic. In particular, prior distributions on the parameter space of each candidate model require special care. While it is well known that improper priors cannot be used routinely for Bayesian model comparison, we claim that in general the use of conventional priors (proper or improper) for model comparison should be r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistics and Computing

سال: 2015

ISSN: 0960-3174,1573-1375

DOI: 10.1007/s11222-015-9611-4